
While KnockKnock, covered in the previ-
ous chapter, provides a powerful detection

capability, it doesn’t protect the system in real
time. To complement it, I created BlockBlock,

which monitors the most important persistence locations
enumerated by KnockKnock, alerts the user whenever
a new item appears, and gives them the ability to block
the activity.

BlockBlock’s initial versions, written in 2014, were largely proofs of
concept, which didn’t stop employees from commercial security companies
from labeling the tool “lam[e]ware” and concluding that “providing quality
service for nothing can’t be a one-person job.”1 Over the years, BlockBlock
has matured, consistently proving its merit with a near 100!percent detec-
tion rate of persistent Mac malware, even without prior knowledge of
these!threats.

11
P E R S I S T E N C E M O N I T O R

254!!!Chapter 11

In this chapter, I’ll discuss BlockBlock’s design and show how it uses
Endpoint Security to effectively detect unauthorized persistence events.
You’ll learn how to request and apply the required Endpoint Security client
entitlement and how XPC can allow tool components to securely communicate
with one another. You can "nd BlockBlock’s source code in its entirety in the
Objective-See GitHub repository at https://github.com/objective-see/BlockBlock.

Entitlements
Multiple BlockBlock components leverage Endpoint Security, which means
the tool must receive a privileged entitlement from Apple. Without the enti-
tlement, attempts to create an Endpoint Security client at runtime will fail
unless we’ve disabled System Integrity Protection (SIP) and Apple Mobile
File Integrity (AMFI). So, let’s start by walking through the process of
requesting the Endpoint Security client entitlement from Apple and, once
it’s granted, applying it to BlockBlock.

Applying for Endpoint Security Entitlements
You can apply for Endpoint Security entitlements at https://developer.apple
.com/contact/request/system-extension/. The request form asks for developer
information, such as your name and company, then presents a drop-down
menu containing a list of entitlements you can request. Select the Endpoint
Security client entitlement, com.apple.developer.endpoint-security.client.
At the bottom of the form, describe how you intend to use the entitlement
you’re requesting.

Given the power of Endpoint Security, Apple is understandably cautious
about granting requests for the client entitlement, even to renowned secu-
rity companies. That said, you can take several measures to improve your
chances of receiving one. First, register as a company, such as an LLC or
equivalent. I’m aware of only one instance in which Apple granted the
Endpoint Security client entitlement to an individual. Second, in your
request, make sure to describe exactly what you plan to do with the entitle-
ment. The Endpoint Security client entitlement is designed for security
tools, so include details of the tool you’re developing and articulate exactly
why it needs the use of Endpoint Security. Finally, be prepared to wait.

Registering App IDs
Once Apple has granted you the entitlement, you must register an App ID for
your tool, specifying its bundle ID and the entitlements it will use. Log in to
your Apple Developer account, click Account, then navigate to Certi!cates,
Identi!ers & Pro!lesIdenti!ers. If you have any existing identi"ers, they
should show up here. To create a new identi"er, click +. Select App IDs, then
click Continue. Select App and Continue again.

This should bring you to the App ID registration form. Most of the
"elds are self-explanatory. For the Bundle ID, Apple recommends using a
reverse-domain name style, generally in the form com.company.product. For
BlockBlock, I populated the "elds as shown in Figure!11-1.

https://github.com/objective-see/BlockBlock
https://developer.apple.com/contact/request/system-extension/
https://developer.apple.com/contact/request/system-extension/

Persistence Monitor!!!255

Figure 11-1: Registering the BlockBlock app ID

In the remainder of the form, you’ll see options to specify either capabili-
ties, app services, or additional capabilities for your tool. Assuming Apple
has granted you the Endpoint Security client entitlement, click Additional
Capabilities, then select the checkbox next to Endpoint Security. To register
the new identi"er, click Register.

Creating Provisioning Profiles
Now you can create the provisioning pro"le, which provides the mechanism
that the operating system will use to authorize the use of the entitlement at
runtime.2 Clicking Pro!les in your Developer Account should take you to
a page containing all of your current pro"les. You can also register a new
pro"le by clicking +. On the "rst page, specify the provisioning pro"le’s
type. Unless you’ll be distributing your tool via the Mac App Store, select
Developer ID at the very bottom of the page. Click Continue, then select
the App ID you just created.

Next, select the certi"cate to include in your pro"le. This is the same
certi"cate you’ll use to sign your application, likely your Apple Developer
certi"cate. On the next page, you’ll be given a list of available entitlements
you can add to the provisioning pro"le. To leverage Endpoint Security,
select System Extension EndpointSecurity for macOS. If Apple hasn’t yet
granted you this entitlement, it won’t show up in the list.

Enabling Entitlements in Xcode
Once you’ve generated the provisioning pro"le, you can head to Xcode to
add it to your project. First, tell Xcode that your project will use Endpoint
Security by clicking the small + next to Capabilities in the Signing &
Capabilities pane and then selecting Endpoint Security capability. Behind
the scenes, this will add the entitlement to the project’s entitlement "le.

Now, when building the tool for deployment, you can select the pro-
visioning pro"le. The "rst time you do this, you might have to download
and import the pro"le into Xcode. Download the pro"le you generated
from your Apple Developer account. Then, in Xcode’s Select Certi"cate
and Developer ID Pro"les window, select the Import Pro!le option, found
in the drop-down menu next to the application’s name, and browse to the
downloaded pro"le.

256!!!Chapter 11

If all goes well, you should have a compiled, entitled tool that also
contains the provisioning pro"le. For example, BlockBlock’s provisioning
pro"le is embedded in its app bundle at the standard location, Contents/
embedded.provisionpro!le. You can dump any embedded provisioning pro"le
by running the macOS security tool, along with the command line #ags
cms -D -i and this path. The following output contains BlockBlock’s App ID,
information about its code signing certi"cate, and the entitlements it is
authorized to use:

% security cms -D -i BlockBlock.app/Contents/embedded.provisionprofile
<?xml version="1.0" encoding="UTF-8"?>
...
<plist version="1.0">
<dict>
 <key>AppIDName</key>
 <string>BlockBlock</string>
 <key>DeveloperCertificates</key>
 <array>
 <data> ... </data>
 </array>
 <key>Entitlements</key>
 <dict>
 <key>com.apple.developer.endpoint-security.client</key>
 <true/>
 <key>com.apple.application-identifier</key>
 <string>VBG97UB4TA.com.objective-see.blockblock</string>
 ...
 </dict>
 ...

You can use the codesign utility to view any entitlements a program
possesses. For BlockBlock, this list includes the Endpoint Security client
entitlement:

% codesign -d --entitlements - BlockBlock.app
Executable=BlockBlock.app/Contents/MacOS/BlockBlock
[Dict]
 [Key] com.apple.application-identifier
 [Value]
 [String] VBG97UB4TA.com.objective-see.blockblock
 [Key] com.apple.developer.endpoint-security.client
 [Value]
 [Bool] true
 ...

Because macOS requires a provisioning pro"le to authorize the entitle-
ment, even programs not typically developed as applications, such as dae-
mons, must be packaged as application bundles to leverage Endpoint Security.
You can read more about this design choice in Apple’s documentation,3 which
also notes that if you switch from a daemon to a system extension, Xcode will
automatically handle the packaging for you.

Persistence Monitor!!!257

Tool Design
BlockBlock is composed of two pieces: a launch daemon and a login item.
The daemon is packaged as an application bundle to accommodate the use
of entitlements and provisioning pro"les. It runs in the background with
root privileges, monitoring for persistence events (by ingesting "le input/
output and other events delivered from Endpoint Security), managing rules,
and blocking user-speci"ed persistent items. Anytime it detects a persistence
event, the daemon sends an XPC message to the login item. The login item,
which runs in the context of the user’s desktop session and thus is capable
of displaying user interface (UI) elements, will then show the user an alert
(Figure!11-2).

Figure 11-2: A BlockBlock alert

BlockBlock’s alerts contain plenty of information about the item that
installed the persistent item and the persistent item itself. This informa-
tion can assist the user in deciding whether to allow or delete the item.
For example, various red #ags in the alert shown in Figure!11-2 indicate
an infection. First, the item that installed the launch agent, airportpaird, is
unsigned, as indicated by the perplexed frowning face. From its path, you
can also see that it’s running from a temporary directory.

If you turn your attention to the persistent item, you’ll notice that the
property list is pre"xed with com.apple, implying that it belongs to Apple.
However, it’s installed in the user’s Launch Agent directory, which only
ever contains third-party agents. Moreover, the persistent item that this prop-
erty list references is installed and runs from a hidden directory (.local).
Finally, if you manually examined the code signing information of this
binary, softwareupdate, you would see it is unsigned.

When I originally released BlockBlock in 2014, Apple didn’t yet support
System Extensions, which is why I placed the tool’s core logic in a launch
daemon. Today, BlockBlock continues to make use of a daemon even though

258!!!Chapter 11

doing so isn’t strictly necessary, as the approach still has bene"ts. For one, you
might want to develop tools that maintain compatibility with older versions of
macOS. It’s also easy for any suf"ciently privileged tool to install and manage
launch daemons. On the other hand, System Extensions require additional
entitlements, and to install or remove them, you’ll typically need explicit user
approval. This adds complexity and requires additional code. Still, there are
cases where putting your code into a System Extension makes sense, as you’ll
see in Chapter!13.

Plug-ins
Like KnockKnock, BlockBlock uses statically compiled plug-ins to detect
multiple types of persistence. Each plug-in is responsible for handling
either one unique persistent event or several related ones. The tool stores
metadata about each plug-in in a property list "le, including the name of
the plug-in class, various descriptions of it to customize alerts, and, most
importantly, a regular expression describing the path or paths of "le events
in which the plug-in is interested. For example, Listing 11-1 shows the meta-
data for the plug-in that monitors "le events for the additions of new launch
daemons and agents.

<dict>
 <key>description</key>
 <string>Launch D & A</string>
 <key>paths</key>
 <array>
 <string>^(\/System|\/Users\/[^\/]+|)\/Library\/(LaunchDaemons|
 LaunchAgents)\/.+\.(?i)plist$</string>
 </array>
 <key>class</key>
 <string>Launchd</string>
 <key>alert</key>
 <string>installed a launch daemon or agent</string>
 ...
</dict>

Listing 11-1: Metadata for the launch item plug-in

The regular expression will be applied to incoming "le input/output
events, matching on those that were ingested due to the addition of prop-
erty lists added to the launch daemons and agents directories such as
/System/Library/LaunchDaemons or ~/ Library/LaunchAgents.

All plug-ins inherit from a custom base class named PluginBase that
implements base methods, such as a standard initialization method and
methods to check whether a "le event matches an event of interest. The
initialization method initWithParams: takes one parameter, a dictionary con-
taining a plug-in’s metadata (Listing 11-2).

-(id)initWithParams:(NSDictionary*)watchItemInfo {
 ...
 NSMutableArray* regexes = [NSMutableArray array];

Persistence Monitor!!!259

 for(NSString* regex in watchItemInfo[@"paths"]) {
 NSRegularExpression* compiledRegex =
 [NSRegularExpression regularExpressionWithPattern:regex
 options:NSRegularExpressionCaseInsensitive error:NULL];

 [self.regexes addObject:compiledRegex];
 }

 self.alertMsg = watchItemInfo[@"alert"];
 self.description = watchItemInfo[@"description"];
 ...
 return self;
}

Listing 11-2: The base class logic for plug-in object initialization

Here, you can see that the method "rst compiles each of the plug-in’s
paths of interest into regular expressions and then extracts other values
from the metadata dictionary to save into instance variables.

Another important base method, isMatch:, accepts a "le object rep-
resenting an event from the FileMonitor library, then checks for a match
against the plug-in paths of interest (Listing 11-3).

-(BOOL)isMatch:(File*)file {
 __block BOOL matched = NO;
 NSString* path = file.destinationPath;

 1 [self.regexes enumerateObjectsWithOptions:NSEnumerationConcurrent
 usingBlock:^(NSRegularExpression* _Nonnull regex, NSUInteger idx, BOOL
 * _Nonnull stop) {

 2 NSTextCheckingResult* match = [regex firstMatchInString:path options:0
 range:NSMakeRange(0, path.length)];
 if((nil == match) || (NSNotFound == match.range.location)) {
 return;
 }

 3 matched = YES;
 *stop = YES;
 }];

 return matched;
}

Listing 11-3: Filepath matching

The method runs enumerateObjectsWithOptions:usingBlock: on the array
of the plug-in’s regular expressions so it can iterate over all of them concur-
rently 1. In the concurrently invoked callback block, it uses the current
regular expression to check whether the destination "le matches an event
of interest to the plug-in 2. For example, for the launch item plug-in, the
method will check whether the "le event corresponds to the creation of a

260!!!Chapter 11

property list in a launch daemon or agent directory. If a match does occur,
the method sets a #ag and terminates the enumeration 3.

Other methods in the base plug-in class are left for each plug-in to
implement. For example, the block: method, invoked when the user clicks
the Block button on the alert, will remove the persistent item. This logic
must differ based on the type of item persisted. If you’re interested in the
speci"c uninstallation logic for each kind of persistent item, take a look at
the code of each plug-in’s block: method.

At its core, BlockBlock ingests events from the FileMonitor library, which
leverages Apple’s Endpoint Security. After initializing a FileMonitor object
with the speci"c events of interest, it speci"es a callback block and then
begins "le monitoring (Listing 11-4).

es_event_type_t events[] = {ES_EVENT_TYPE_NOTIFY_CREATE, ES_EVENT_TYPE_NOTIFY_WRITE,
ES_EVENT_TYPE_NOTIFY_RENAME, ES_EVENT_TYPE_NOTIFY_EXEC, ES_EVENT_TYPE_NOTIFY_EXIT}; 1

FileCallbackBlock block = ^(File* file) {
 ...
 [self processEvent:file plugin:nil message:nil]; 2
};

FileMonitor* fileMon = [[FileMonitor alloc] init];
[fileMon start:events count:sizeof(events)/sizeof(events[0]) csOption:csNone callback:block];
...

Listing 11-4: A helper method invoked for each file event

If you look carefully at the Endpoint Security events of interest passed
to the "le monitor, you’ll see both "le and process events 1. It makes sense
to initialize a "le monitor with "le events, and we need the process events to
record the arguments of processes creating persistent items. Although not
every process that persists an item is invoked with arguments, many are, and
in those cases, we include the arguments in the alert shown to the user to help
them determine whether the persistence event is benign or malicious. Before
we discuss the processing of "le input/output events, note that the!"le moni-
tor logic is started by invoking the start:count:csOption:callback: method.

When the "le monitor receives events, it invokes the speci"ed callback
block with a File object representing the event. The callback simply hands
this object a helper method named processEvent:plugin:message: 2. This
method calls each plug-in’s isMatch: method to see whether the "le event
matches any persistence locations, such as the creation of a .plist in the
launch daemon or agent directories. If any plug-in is interested in the "le
event, BlockBlock creates a custom Event object with both the "le object
representing the persistence event and the relevant plug-in.

Next, the method checks whether the event matches any existing rules.
Rules get created when a user interacts with an alert. They can either allow
or block persistence items based on factors like the item’s startup "le or
the process responsible for triggering the event. For example, on my devel-
oper box, where I also dabble in photography and photo editing, there are
rules allowing the creation of various Adobe Creative Cloud launch agents
(Figure!11-3).

Persistence Monitor!!!261

Figure 11-3: BlockBlock rules can allow or block events from specified processes.

Because Adobe frequently updates these persistent items, without these
rules I’d be regularly responding to BlockBlock alerts. If it "nds a match-
ing rule, BlockBlock automatically takes the action speci"ed in the rule.
Otherwise, it delivers the event to the BlockBlock login item to show an
alert to the user. Shortly, we’ll take a closer look at how bidirectional XPC
achieves this communication. First, though, let’s explore BlockBlock’s use
of the Endpoint Security Background Task Management events.

Background Task Management Events
One downside to using a global "le monitor to detect persistence is that
it’s rather inef"cient, as "le events happen almost constantly as part of
normal system behavior. While we could mitigate the in#ux of traf"c
using Endpoint Security’s mute inversion capabilities covered in Chapter!9,
BlockBlock needs to monitor many locations to detect multiple methods of
persistence, and mute inversion may not fully alleviate the inef"ciencies of a
"le monitor–based approach.

A better solution for our purposes would be to subscribe to persis-
tence events rather than "le events. In previous chapters, I discussed the
Background Task Management subsystem, a recent addition to macOS
that governs the most popular types of persistence, including login items,
launch agents, and daemons. Background Task Management also added
two events to Endpoint Security: ES_EVENT_TYPE_NOTIFY_BTM_LAUNCH_ITEM_ADD
and ES_EVENT_TYPE_NOTIFY_BTM_LAUNCH_ITEM_REMOVE, which clients can receive
whenever a login or launch item is persisted or removed.

Recent versions of BlockBlock leverage the "rst of these events to dep-
recate much of its "le monitoring–based approach, providing a signi"cant
boost in ef"ciency and simplifying the code base. The tool still monitors
persistence mechanisms such as cronjobs, however, for which Background
Task Management doesn’t yet generate Endpoint Security events, so it can’t
wholly deprecate its "le monitoring.

N O T E : Although Endpoint Security technically added these Background Task Management
events in macOS 13, they didn’t work correctly. For example, Endpoint Security
would deliver a noti!cation not just for a newly installed item but for every existing
item as well. Worse, for login items, it delivered no event at all! After I reported these
"aws, Apple !xed both issues in macOS 14.4 When run on macOS 13 and earlier,
BlockBlock falls back to the !le monitoring–based approach.

262!!!Chapter 11

You can "nd the code that implements an Endpoint Security client
for Background Task Management in the Daemon/Monitors/BTMMonitor.m
folder and the plug-in to process the events in Daemon/Plugins/Btm.m. Let’s
start by considering the Background Task Management monitor. As with
any code that wants to leverage Endpoint Security events, we start by de"n-
ing the events of interest, creating an Endpoint Security client with a han-
dler block, and subscribing to the speci"ed events (Listing 11-5).

es_event_type_t btmESEvents[] = {ES_EVENT_TYPE_NOTIFY_BTM_LAUNCH_ITEM_ADD}; 1

es_new_client(&_endpointClient, ^(es_client_t* client, const es_message_t* message) { 2
 // Message handler code removed for brevity 3
});

es_subscribe(self.endpointClient, btmESEvents, sizeof(btmESEvents)/sizeof(btmESEvents[0])); 4

Listing 11-5: Subscribing to ES_EVENT_TYPE_NOTIFY_BTM_LAUNCH_ITEM_ADD events

The code starts by creating an array with the single event to subscribe
to 1. Then, using the es_new_client API, it creates a new Endpoint Security
client. Because the client is an instance variable of the BTMMonitor class, we
prepend it with an underscore (_) to pass it to the es_new_client API 2. We
must do this because the compiler automatically generates an instance vari-
able pre"xed with an underscore whenever we declare an instance variable
using the Objective-C @property keyword.5 We normally don’t directly refer-
ence instance variables, but rather access them through an object; however,
in the case of Endpoint Security’s C APIs, such as es_new_client, which
expects a pointer, we must perform a direct reference.

Recall that the es_new_client API accepts a handler block to invoke
each time a subscribed-to event occurs 3. Shortly, you’ll see the code that
BlockBlock’s Background Task Management monitor executes in this call-
back. Of course, before Endpoint Security can deliver events, we must tell it
that we’re interested in subscribing, which we do via the es_subscribe API 4.

Listing 11-6 shows the code in the handler block.

es_new_client(&_endpointClient, ^(es_client_t* client, const es_message_t* message) {
 File* file = [[File alloc] init:(es_message_t*)message csOption:csNone]; 1

 if((ES_BTM_ITEM_TYPE_AGENT == message->event.btm_launch_item_add->item->item_type) || 2
 (ES_BTM_ITEM_TYPE_DAEMON == message->event.btm_launch_item_add->item->item_type)) {
 file.destinationPath =
 convertStringToken(&message->event.btm_launch_item_add->item->item_url);
 }
 es_message_t* messageCopy = NULL;

 if(@available(macOS 11.0, *)) { 3
 es_retain_message(message);
 messageCopy = (es_message_t*)message;
 } else {

Persistence Monitor!!!263

 messageCopy = es_copy_message(message);
 }
 [monitor processEvent:file plugin:btmPlugin message:messageCopy]; 4
});

Listing 11-6: The Background Task Management event monitoring logic

First, the code initializes a BlockBlock File object, passing in the received
Endpoint Security message 1. Then, for launch agents and daemons, it
directly sets the "le’s destination path to the property list of the item just
created. We "nd this property list in the item_url member of the item structure
in the btm_launch_item_add structure, within the Endpoint Security message 2.

Finally, the code calls BlockBlock’s processEvent:plugin:message: method
covered earlier in the chapter 4. Here, though, the plug-in passed to the
method is an instance of BlockBlock’s Background Task Management plug-
in, which I’ll discuss next. Notice that we pass a retained instance or copy of
the Endpoint Security message. This is because BlockBlock needs to retain
the message for later use (for example, to process the user’s asynchronous
response). Note that the code will invoke the more modern es_retain_message
API if running on a recent version of macOS, though falls back to using the
es_copy_message if running on older versions 3. Because it explicitly retained
or copied the message, BlockBlock must free it when it’s no longer needed
by invoking the appropriate es_release_message or es_free_message API.

Like all other BlockBlock plug-ins, the Background Task Management
plug-in implements methods to retrieve the name and path of the persisted
item, to block the item if instructed by the user, and more. Of course, the
logic it uses to do so is speci"c to Background Task Management persistence
events. Let’s take a look at the plug-in’s itemObject: method, which returns
the path to the persisted executable. As shown in Listing 11-7, we can extract
this information from the delivered Endpoint Security message, although it
differs slightly depending on whether the item persisted as a launch item or
a login item.

-(NSString*)itemObject:(Event*)event {
 NSString* itemObject = nil;

 if((ES_BTM_ITEM_TYPE_AGENT ==
 event.esMessage->event.btm_launch_item_add->item->item_type) || 1
 (ES_BTM_ITEM_TYPE_DAEMON ==
 event.esMessage->event.btm_launch_item_add->item->item_type)) {
 itemObject =
 convertStringToken(&event.esMessage->event.btm_launch_item_add->executable_path);
 } else {
 NSString* stringToken =
 convertStringToken(&event.esMessage->event.btm_launch_item_add->item->item_url); 2
 itemObject = [[NSURL URLWithString:stringToken] path];
 }
 return itemObject;
}

Listing 11-7: Returning the path to the persisted item

264!!!Chapter 11

The code "rst checks the type of the persisted item 1. Conveniently,
Endpoint Security indicates this information with constants such as ES_BTM
_ITEM_TYPE_AGENT and ES_BTM_ITEM_TYPE_DAEMON and speci"es the item type in
the item_type member of the item structure. Assuming the persisted item is
a launch item, the code extracts its executable path from the executable
_path member of the btm_launch_item_add structure. To convert it from
an es_string_token_t type to an Objective-C string object, we invoke the
BlockBlock convertStringToken helper function.

For login items, we can "nd the path to the persisted item in the item_url
member of the item structure 2. Again, we invoke the convertStringToken
helper function. However, the path to the item is really a URL object, so we
must convert it back to a URL, then use the path property of the URL to get
the "lepath in the form of a string.

The other notable method in the Background Task Management plug-in
is block:, which BlockBlock invokes when the user clicks Block on the alert
shown for a persisted item. Because there is logic to remove both launch
and login items in the older, "le monitor–based plug-ins, the Background
Task Management plug-in can call into the relevant plug-ins to block the
item (Listing 11-8).

-(BOOL)block:(Event*)event {
 __block BOOL wasBlocked = NO;

 switch(event.esMessage->event.btm_launch_item_add->item->item_type) {
 1 case ES_BTM_ITEM_TYPE_APP:
 case ES_BTM_ITEM_TYPE_LOGIN_ITEM: {
 LoginItem* loginItem = [[LoginItem alloc] init];
 wasBlocked = [loginItem block:event];
 break;
 }
 2 case ES_BTM_ITEM_TYPE_AGENT:
 case ES_BTM_ITEM_TYPE_DAEMON: {
 Launchd* launchItem = [[Launchd alloc] init];
 wasBlocked = [launchItem block:event];
 break;
 }
 ...
 }
 return wasBlocked;
}

Listing 11-8: Blocking logic that calls into login and launch item plug-ins

To determine the type of the Background Task Management item, the
code once again makes use of the item_type member found in the Endpoint
Security Background Task Management message. For login items (which
can include persisted user applications), the code instantiates an instance
of BlockBlock’s Login Item plug-in and then invokes its block: method 1.
For launch agents and daemons, it takes a similar approach, instantiating
the launch item plug-in 2.

Persistence Monitor!!!265

This wraps up the discussion of BlockBlock’s Background Task Manage-
ment monitor and plug-in. Next, let’s look at XPC communications, which
BlockBlock makes extensive use of.

XPC
XPC is the de facto interprocess communication (IPC) mechanism on
macOS. Anytime you write tools with multiple components, such as a privi-
leged daemon or System Extension and an agent or app running in the user’s
desktop session, the components will likely need to communicate via XPC. In
this section, I’ll provide an overview of the topic, including the XPC APIs and
speci"c examples. If you’re interested in learning more, you can dig deeper
into BlockBlock code, which makes extensive use of bidirectional XPC.

To some extent, XPC conforms to a traditional client/server model. One
component (in our case, the BlockBlock daemon) sets up an XPC server, or
listener. An authorized client (for example, BlockBlock’s login item) can con-
nect to the listener, then remotely invoke privileged methods implemented
within the listener. Say a user responds to a BlockBlock alert, instructing the
tool to block a persistently installed item, then creates a rule to automati-
cally block related items in the future. Via XPC, BlockBlock’s login item can
invoke the daemon’s privileged block and create rule methods. These methods
run in the context of the privileged daemon to ensure that they have the
appropriate permissions to remove even privileged persistent items. They
can also create rules in a privileged context to help protect against malicious
subversions.

Creating Listeners and Delegates
Let’s explore how the BlockBlock daemon creates the XPC listener and,
more importantly, ensures that only authorized clients can connect to it.
The latter point is essential for security tools, because if we leave the XPC
interface unprotected, nothing stops malware or anything else from con-
necting to it and invoking the daemon’s privileged methods.

BlockBlock implements the XPC listener and connection logic in an
interface named XPCListener that conforms to the NSXPCListenerDelegate pro-
tocol (Listing 11-9).

@interface XPCListener : NSObject <NSXPCListenerDelegate>
 @property(weak)NSXPCConnection* client;
 @property(nonatomic, retain)NSXPCListener* listener;
 ...
}

Listing 11-9: An XPC listener class

To create an XPC interface, you can use the NSXPCListener initWithMach
ServiceName: initialization method, which takes the name of the XPC service

266!!!Chapter 11

as an argument. Listing 11-10 is the code from BlockBlock’s XPCListener class
that creates its XPC listener.

#define DAEMON_MACH_SERVICE @"com.objective-see.blockblock"

self.listener = [[NSXPCListener alloc] initWithMachServiceName:DAEMON_MACH_SERVICE];

Listing 11-10: Initializing an XPC listener

Note that Apple built XPC atop the much older Mach message passing
framework. This explains why you’ll run into method names such as init
With MachServiceName:.

Once you’ve created a listener, you should specify the delegate, which
contains pertinent XPC delegate methods. The XPC system frameworks will
automatically invoke these delegate methods if implemented. Once invoked,
they can perform important tasks, such as verifying any clients.

Because BlockBlock’s XPCListener class conforms to the NSXPCListener
Delegate protocol, it simply sets the listener delegate to itself. Then it
invokes the listener’s resume method to start processing client connections
(Listing!11-11).

self.listener.delegate = self;
[self.listener resume];

Listing 11-11: Setting the delegate and resuming the listener

Now clients such as BlockBlock’s login item can initiate a connection
to the listener. But before we show exactly how the client can perform this
action, we must ensure that only authorized clients can connect.

Extracting Audit Tokens
If you allow any client to connect to your privileged XPC interface, untrusted
code could run the listener’s privileged methods. This issue has plagued
core macOS XPC listeners as well as many third-party tools. For a speci"c
example, see my 2015 DEF CON talk, which details the exploitation of the
unprotected and privileged macOS writeConfig XPC interface to elevate privi-
leges to root.6

N O T E Versions of macOS beginning with 13 simplify the authorization process, and I’ll
cover these steps in “Setting Client Requirements” on page 270. In this section,
I’ll#cover authorization methods that make your tools compatible with earlier versions
of the operating system.

To authorize clients, we can turn to the NSXPCListenerDelegate listener:
shouldAcceptNewConnection: method.7 If a delegate provides an implementation
of this method, the XPC subsystem will automatically invoke it whenever a
client attempts to connect. The method should examine the candidate client
and then return a Boolean value indicating whether to accept the client.

Persistence Monitor!!!267

For authorized clients, this method should also con"gure the connec-
tion; I’ll discuss how to do this shortly. Finally, because all connections start
in a suspended state while they’re being authorized and con"gured, this
method should invoke the resume method on the passed-in NSXPCConnection
object for authorized clients. This allows the connection to start processing
any received messages, as well as to send its own (Listing 11-12).

-(BOOL)listener(NSXPCListener*)listener shouldAcceptNewConnection:
(NSXPCConnection*)newConnection {
 BOOL shouldAccept = NO;

 // Code to authorize the client, and ignore unauthorized ones, removed for brevity

 [newConnection resume];
 shouldAccept = YES;

bail:
 return shouldAccept;
}

Listing 11-12: Resuming a connection

While we could attempt to verify the client in several ways, many
approaches are #awed or incomplete. For example, using the candidate
client’s process ID is dangerous, as an attacker can exploit the fact that the
system reuses process IDs to coerce the listener into allowing an unauthor-
ized client.

A better method is to check the client’s audit token and retrieve its code
signing information. Unfortunately, in older versions of macOS, Apple
doesn’t readily expose the client’s audit token, which means we have to
resort to some Objective-C trickery. The listener:shouldAcceptNewConnection:
method’s second argument is a pointer to an NSXPCConnection object, which
contains information about the client attempting to connect to the XPC
service. While it does contain the audit token in its auditToken property, this
property is private, meaning we can’t directly access it. Luckily, Objective-C
is introspective, so we can access private properties via a class extension. In
Listing 11-13, BlockBlock creates an extension to the NSXPCConnection class.

@interface ExtendedNSXPCConnection : NSXPCConnection {
 audit_token_t auditToken;
}
 @property audit_token_t auditToken;
@end

Listing 11-13: Extending the NSXPCConnection class to access its private audit token

Note that the extension de"nes a single property: the private audit
token found within the NSXPCConnection class. Once we’ve declared this exten-
sion, we can access the private audit token of the connecting client, as shown
in Listing 11-14.

268!!!Chapter 11

-(BOOL)listener:(NSXPCListener*)listener shouldAcceptNewConnection:(NSXPCConnection*)
newConnection {
 ...
 audit_token_t auditToken = ((ExtendedNSXPCConnection*)newConnection).auditToken;
 ...
}

Listing 11-14: Accessing the connecting client’s audit token

This code typecasts the NSXPCConnection object, representing the connect-
ing client, as an ExtendedNSXPCConnection object. Then it can readily extract the
client’s audit token member. With an audit token in hand, the code can verify
code signing information about the client, then securely verify the identity of
the client and approve the connection if the client is authorized.

Extracting Code Signing Details
To verify the client’s code signing information, BlockBlock’s implementa-
tion of the listener:shouldAcceptNewConnection: delegate method takes the
following steps. First, it uses the extracted audit token to obtain a dynamic
code signing reference for the client process. It uses this reference to vali-
date that the client’s code signing information is valid, then extracts the
information. Additionally, it extracts the client code signing #ags to ensure
that the client was compiled with the hardened runtime, guarding against
runtime injection attacks. Finally, it checks that the validated code signing
information contains the bundle ID of the BlockBlock helper application,
the Objective-See developer code signing certi"cate, and supported client
versions. Listing 11-15 shows the implementation of this requirement.

" 1 anchor apple generic and 2 identifier \"com.objective-see.blockblock
.helper\" and 3 certificate leaf [subject.CN] = \"Developer ID Application:
Objective-See, LLC (VBG97UB4TA)\" and 4 info [CFBundleShortVersionString]
>= \"2.0.0\"";

Listing 11-15: A code signing requirement to validate connecting XPC clients

Chapter!3 covered code signing requirements, but let’s break this one
down. First, we require that the client be signed using a certi"cate issued by
Apple to developers 1. Next, we require the client identi"er to match that
of Objective-See’s BlockBlock helper 2. We also require that the client be
signed with Objective-See’s code signing certi"cate 3. Finally, we require
client versions of 2.0.0 or newer 4, as older versions of BlockBlock’s helper
don’t support the more recent hardened runtime, leaving them vulnerable
to subversion.8

If all these validation and veri"cation steps succeed, the BlockBlock
daemon knows that the client attempting to connect to its XPC interface is
indeed a recent version of the BlockBlock helper component and that an
attacker or malware hasn’t surreptitiously tampered with this component.

Listing 11-16 shows the code that implements the full client autho-
rization. Note the use of various SecTask* code signing APIs, covered in

Persistence Monitor!!!269

Chapter!3. As it’s imperative to always check the return value of these APIs,
this code contains basic error handling.

#define HELPER_ID @"com.objective-see.blockblock.helper"
#define SIGNING_AUTH @"Developer ID Application: Objective-See, LLC (VBG97UB4TA)"

-(BOOL)listener:(NSXPCListener*)listener shouldAcceptNewConnection:(NSXPCConnection*)
newConnection {
 BOOL shouldAccept = NO;
 audit_token_t auditToken = ((ExtendedNSXPCConnection*)newConnection).auditToken;

 OSStatus status = SecCodeCopyGuestWithAttributes(NULL, (__bridge CFDictionaryRef _Nullable)
 (@{(__bridge NSString*)kSecGuestAttributeAudit : [NSData dataWithBytes:&auditToken
 length:sizeof(audit_token_t)]}), kSecCSDefaultFlags, &codeRef);
 if(errSecSuccess != status) {
 goto bail;
 }

 status = SecCodeCheckValidity(codeRef, kSecCSDefaultFlags, NULL);
 if(errSecSuccess != status) {
 goto bail;
 }

 status = SecCodeCopySigningInformation(codeRef, kSecCSDynamicInformation, &csInfo);
 if(errSecSuccess != status) {
 goto bail;
 }

 uint32_t csFlags = [((__bridge NSDictionary*)csInfo)[(__bridge NSString*)
 kSecCodeInfoStatus] unsignedIntValue];
 if(!(CS_VALID & csFlags) && !(CS_RUNTIME & csFlags)) {
 goto bail;
 }

 NSString* requirement = [NSString stringWithFormat:@"anchor apple generic and
 identifier \"%@\" and certificate leaf [subject.CN] = \"%@\" and info
 [CFBundleShortVersionString] >= \"2.0.0\"", HELPER_ID, SIGNING_AUTH];

 SecTaskRef taskRef = SecTaskCreateWithAuditToken(NULL, ((ExtendedNSXPCConnection*)
 newConnection).auditToken);

 status = SecTaskValidateForRequirement(taskRef, (__bridge CFStringRef)(requirement));
 if(errSecSuccess != status) {
 goto bail;
 }

 shouldAccept = YES;

 // Add code here to configure and finalize the NSXPCConnection.

bail:
 return shouldAccept;
}

Listing 11-16: Authorizing XPC clients

270!!!Chapter 11

You may be surprised by how hard it is to protect privileged XPC
interfaces. Apple eventually realized this too, and luckily, in macOS 13,
it provided two new APIs speci"cally designed to simplify the process of
ensuring that only authorized clients could connect. If your tools will run
only on versions of macOS 13 or newer, you should make use of these APIs
so you don’t have to worry about accessing private audit tokens or manually
extracting and verifying code signing information. The next section will
detail these APIs.

Setting Client Requirements
On macOS 13 and newer, the NSXPCListener class’s setConnectionCodeSigning
Requirement: method9 and the NSXPCConnection class’s setCodeSigningRequirement:
method10 allow you to set code signing requirements on either the listener
or the connection object. The "rst option applies to all connections, while
the second applies to only speci"c ones, but you can use either to keep
unauthorized clients from connecting to an XPC interface.

BlockBlock uses the listener method, which requires less granularity; it
denies any and all connections that don’t belong to the BlockBlock helper
client. Recall that Listing 11-10 showed the code for initializing an XPC
listener. Listing 11-17 builds on this foundation by adding code to run on
macOS versions 13 and newer.

#define DAEMON_MACH_SERVICE @"com.objective-see.blockblock"
#define HELPER_ID @"com.objective-see.blockblock.helper"
#define SIGNING_AUTH @"Developer ID Application: Objective-See, LLC (VBG97UB4TA)"

self.listener = [[NSXPCListener alloc] initWithMachServiceName:DAEMON_MACH_SERVICE];

if(@available(macOS 13.0, *)) {
 NSString* requirement = [NSString stringWithFormat:@"anchor apple generic and
 identifier \"%@\" and certificate leaf [subject.CN] = \"%@\" and info
 [CFBundleShortVersionString] >= \"2.0.0\"", HELPER_ID, SIGNING_AUTH]; 1

 [self.listener setConnectionCodeSigningRequirement:requirement]; 2
}

self.listener.delegate = self;
[self.listener resume];

Listing 11-17: Authorizing clients on macOS versions 13 and newer

After allocating and initializing an NSXPCListener object, we use the
Objective-C @available attribute with a value of macOS 13.0, * to instruct the
compiler to execute the following lines on macOS 13 or newer only 1, as
the setConnectionCodeSigningRequirement: method isn’t available on earlier
versions of macOS.

We then dynamically initialize a code signing requirement string 2
with which to validate any clients attempting to connect to the listener. The
requirement is identical to the one shown previously. Finally, BlockBlock
invokes the setConnectionCodeSigningRequirement: method to instruct the XPC

Persistence Monitor!!!271

runtime to only accept connections from clients that conform to the speci-
"ed code signing requirement string. Now we no longer have to manually
verify clients; macOS will take care of it for us!

To con"rm that the authorization works, compile and execute BlockBlock
on macOS version 13 or newer, then attempt to connect to its XPC interface
with an illegitimate client. The connection should fail, and the system’s XPC
library should print the following message to the uni"ed log:

Default 0x0 56198 0 BlockBlock: (libxpc.dylib) Bogus check-in attempt. Ignoring.

Now that BlockBlock can authorize XPC clients, it can con"gure and
then activate the connection.

Enabling Remote Connections
XPC communications usually occur in only one direction; a client connects
to a listener and invokes its methods. BlockBlock, however, implements
bidirectional communications. The daemon implements most of the XPC
methods for tasks like blocking or removing persistent items and creating
rules, and the client invokes these. However, the daemon also calls methods
implemented in the client to, for example, display alerts to the user.

To facilitate this bidirectional IPC, we must con"gure the NSXPCConnection
object. First, let’s con"gure the listener object on the server side. This involves
de"ning the remote methods that the client can invoke and specifying
an object on the server side of the XPC interface that implements these
methods. Both the server and the client must agree on what methods the
client can remotely call. We can achieve this by setting the listener’s exported
Interface property to an NSXPCInterface object that describes the protocol for
the exported object.11

In this context, a protocol is simply a list of methods that conformant
objects will implement.12 We normally declare these protocols in header (.h)
"les, making them easy to include in both server and client code. Listing 11-18
is the BlockBlock daemon’s XPC protocol.

@protocol XPCDaemonProtocol
 -(void)getPreferences:(void (^)(NSDictionary*))reply;
 -(void)updatePreferences:(NSDictionary*)preferences;
 -(void)getRules:(void (^)(NSData*))reply;
 -(void)deleteRule:(Rule*)rule reply:(void (^)(NSData*))reply;
 -(void)alertReply:(NSDictionary*)alert;
@end

Listing 11-18: The XPC daemon protocol

Once we’ve declared this protocol, the daemon can set the exported
Interface property to an NSXPCInterface object conformant to the XPCDaemon
Protocol protocol. You can "nd the code to enable client connections in the
listener:shouldAcceptNewConnection: delegate method (Listing 11-19).

272!!!Chapter 11

-(BOOL)listener:(NSXPCListener*)listener shouldAcceptNewConnection:
(NSXPCConnection*)newConnection {
 // Code to authorize the client, and ignore unauthorized ones, removed for brevity

 newConnection.exportedInterface =
 [NSXPCInterface interfaceWithProtocol:@protocol(XPCDaemonProtocol)];
 ...

Listing 11-19: Setting the exported interface for the NSXPCConnection

Of course, you must also specify the object on the server side that
implements these methods (in this case, the BlockBlock daemon). You can
do this by setting the exportedObject property on the listener (Listing 11-20).

-(BOOL)listener:(NSXPCListener*)listener shouldAcceptNewConnection:
(NSXPCConnection*)newConnection {
 // Code to authorize the client, and ignore unauthorized ones, removed for brevity
 ...
 newConnection.exportedObject = [[XPCDaemon alloc] init];
 ...

Listing 11-20: Setting the object that implements the exported interface

BlockBlock creates a class named XPCDaemon to implement client-callable
methods. As expected, this class conforms to the daemon protocol, XPCDaemon
Protocol (Listing 11-21).

@interface XPCDaemon : NSObject <XPCDaemonProtocol>
@end

Listing 11-21: An interface conformant to XPCDaemonProtocol

Next, we’ll brie#y look at a few of the privileged XPC methods that the
BlockBlock helper component running in the limited-privilege user session
can invoke.

Exposing Methods
BlockBlock lets users de"ne rules to automatically allow common persistence
events. The privileged BlockBlock daemon manages these rules to keep
unprivileged malware from tampering with them (for example, by adding
an allow rule that permits the malware to persist). To display the rules to the
user, the BlockBlock client will invoke the daemon’s getRules: method via
XPC (Listing 11-22).

-(void)getRules:(void (^)(NSData*))reply {
 NSData* archivedRules = [NSKeyedArchiver archivedDataWithRootObject:
 rules.rules requiringSecureCoding:YES error:nil];

 reply(archivedRules);
}

Listing 11-22: Returning serialized rules

Persistence Monitor!!!273

Because XPC is asynchronous, methods that return data should do so
in a block. The getRules: method declared in XPCDaemonProtocol takes such
a block, which the caller can invoke with a data object containing the list
of rules. Notice that the method’s implementation is rather basic; it simply
serializes the rules and sends them back to the client.

A more involved example of an XPC method is alertReply:, which the
client invokes via XPC once a user has interacted with a persistence alert
(for example, by clicking Block). The method takes a dictionary that encap-
sulates the alert. The user doesn’t expect any response, so the method doesn’t
use any callback block. Listing 11-23 shows the method’s main code imple-
mented within the daemon.

-(void)alertReply:(NSDictionary*)alert {
 Event* event = nil;
 @synchronized(events.reportedEvents) {
 1 event = events.reportedEvents[alert[ALERT_UUID]];
 }

 2 event.action = [alert[ALERT_ACTION] unsignedIntValue];
 if(BLOCK_EVENT == event.action) {
 3 [event.plugin block:event];
 }
 ...
 if(YES != [alert[ALERT_TEMPORARY] boolValue]) {
 4 [rules add:event];
 }
}

Listing 11-23: Handling the user’s response to an alert

First, we retrieve an object representing the persistent event from the
alert dictionary using a UUID 1. We wrap the object in a @synchronized
block to ensure thread synchronization. Next, we extract the user-speci"ed
action (either block or allow) from the alert 2. If the user has decided to
block the persistent event, BlockBlock will call in the relevant plug-in’s
block: method. This will execute the plug-in–speci"c code to remove the
persistent item 3 and add a rule for the event, so long as the user didn’t
click the “temporary” checkbox on the alert 4.

I mentioned that the BlockBlock daemon also needs to call methods
implemented in the helper, for example, to display an alert to the user.
It can do so over the same XPC interface once the helper has connected,
although we need to specify a dedicated protocol. BlockBlock names this
client protocol XPCUserProtocol (Listing 11-24). It contains methods the client
will implement and that the daemon can remotely invoke over XPC.

@protocol XPCUserProtocol
 -(void)alertShow:(NSDictionary*)alert;
 ...
@end

Listing 11-24: The XPC user protocol

274!!!Chapter 11

Back in the listener:shouldAcceptNewConnection: method, we con"gure
the listener to allow the daemon to invoke the client’s remote methods
(Listing 11-25).

-(BOOL)listener:(NSXPCListener*)listener shouldAcceptNewConnection:
(NSXPCConnection*)newConnection {
 // Code to authorize the client, and ignore unauthorized ones, removed for brevity
 ...
 newConnection.remoteObjectInterface =
 [NSXPCInterface interfaceWithProtocol:@protocol(XPCUserProtocol)];

Listing 11-25: Setting the remote object interface

We set the remoteObjectInterface property and specify the XPCUserProtocol
protocol.

Initiating Connections
So far, I’ve shown how the BlockBlock daemon sets up an XPC listener,
exposes methods, and ensures that only authorized clients can connect.
However, I haven’t yet shown how the client initiates a connection or how it
and the daemon remotely invoke the XPC methods.

Once the BlockBlock daemon is running, its XPC interface becomes avail-
able for authorized connections. To connect to the daemon, the BlockBlock
helper uses the NSXPCConnection object’s initWithMachServiceName:options: method,
specifying the same name used by the daemon (Listing!11-26).

#define DAEMON_MACH_SERVICE @"com.objective-see.blockblock"

NSXPCConnection* daemon = [[NSXPCConnection alloc]
initWithMachServiceName:DAEMON_MACH_SERVICE options:0];

Listing 11-26: Initializing a connection to the daemon XPC service

As we did on the server side, we must set the protocol for the remote
object interface. Because we’re now on the client side, the “remote object
interface” in this case refers to the XPC object on the daemon that exposes
remotely invocable methods (Listing 11-27).

#define DAEMON_MACH_SERVICE @"com.objective-see.blockblock"

NSXPCConnection* daemon = [[NSXPCConnection alloc]
initWithMachServiceName:DAEMON_MACH_SERVICE options:0];

daemon.remoteObjectInterface =
[NSXPCInterface interfaceWithProtocol: @protocol(XPCDaemonProtocol)]; 1

daemon.exportedInterface = [NSXPCInterface interfaceWithProtocol:@protocol(XPCUserProtocol)];
daemon.exportedObject = [[XPCUser alloc] init]; 2

[daemon resume]; 3

Listing 11-27: Setting up the XPC connection object on the client side

Persistence Monitor!!!275

Recall that this object conforms to XPCDaemonProtocol, so we specify it
here!1. Also, because the daemon needs to call methods implemented
in the client, the client needs to set up its own exported object. It does
this via!the!exportedInterface and exportedObject methods 2. The former
speci"es the protocol (XPCUserProtocol), while the latter speci"es the object
(XPCUser) in the client that implements the exported XPC methods. Finally,
we resume the connection 3, which triggers the actual connection to the
daemon’s XPC!listener.

Invoking Remote Methods
At this point, we’ve "nished implementing the XPC connection. I’ll end
this discussion of BlockBlock’s XPC utilization by showing how it actually
invokes remote methods, focusing on the more common case of the client
side. To abstract its communications with the daemon, the BlockBlock
client uses a custom class named XPCDaemonClient. The code in Listing 11-26
that establishes an XPC connection lives in this class, as does the code that
invokes the remote XPC methods.

To connect to the daemon and invoke one of its remote privileged XPC
methods (for example, to get the current rules), the client can execute the
code in Listing 11-28.

XPCDaemonClient* xpcDaemonClient = [[XPCDaemonClient alloc] init];
NSArray* rules = [[xpcDaemonClient getRules];

Listing 11-28: Invoking remote XPC methods

Let’s take a closer look at the getRules method, which invokes the dae-
mon’s remotely exposed corresponding getRules: method. This method
provides a good example of how you can invoke XPC methods, taking into
account their nuances. Note that though the method contains additional
logic to deserialize the rules it receives from the daemon, here we’re only
focusing on the XPC logic (Listing 11-29).

-(NSArray*)getRules {
 __block NSDictionary* unarchivedRules = nil;
 ...
 [[self.daemon synchronousRemoteObjectProxyWithErrorHandler:^(NSError* proxyError) { 1
 // Code to handle any errors removed for brevity 2
 }] getRules:^(NSData* archivedRules) {
 // Code to process the serialized rules from the daemon removed for brevity 3
 }];
 ...
 return rules;
}

Listing 11-29: Getting rules from the daemon

First, the code invokes the NSXPCConnection class’s synchronous connec-
tion method 1. While XPC is generally asynchronous, we’re expecting the
daemon to return data, so using a synchronous call makes the most sense in

276!!!Chapter 11

this situation. In other places, BlockBlock uses the more common asynchro-
nous remoteObjectProxyWithErrorHandler: method.

The XPCDaemonClient class’s init method previously established the con-
nection and saved it in the instance variable named daemon. The connection
method returns the remote object, which exposes remotely invocable XPC
methods. If any errors occur while retrieving this object, the code invokes
an error block 2.

With a remote object in hand, we can then invoke its methods, such
as its getRules: method. To return data, this XPC call takes a reply block;
Listing 11-22 showed the implementation of this method, found within the
daemon. When the call completes, the block executes, taking as a param-
eter a data object containing the serialized rules from the daemon 3.

Conclusion
BlockBlock’s approach is simple: detect persistent items, alert the user, and
allow them to remove unwanted items. While straightforward, this design
has proved incredibly effective against even the most sophisticated of persis-
tent Mac malware.

In this chapter, you saw how to request an Endpoint Security entitle-
ment from Apple. You also looked at BlockBlock’s design, its use of Endpoint
Security events, and its bidirectional XPC communications. If you’re build-
ing your own security tools, I encourage you to draw from the system frame-
works, APIs, and mechanisms that BlockBlock employs.

The next chapter explores a tool designed to heuristically detect some
of the most insidious malware specimens: those that surreptitiously spy on
victims through their mics and webcams.

Notes
 1. “Writing Bad @$$ Lamware for OS X,” reverse.put.as, August!7, 2015,

https://reverse.put.as/2015/08/07/writing-bad-lamware-for-os-x/.

 2. “TN3125: Inside Code Signing: Provisioning Pro"les,” Apple Developer
Documentation, https://developer.apple.com/documentation/technotes/tn3125
-inside-code-signing-provisioning-pro!les.

 3. “Signing a Daemon with a Restricted Entitlement,” Apple Developer
Documentation, https://developer.apple.com/documentation/xcode/signing-a
-daemon-with-a-restricted-entitlement.

 4. asfdadsfasdfasdfsasdafads, “Endpoint Security Event: ES_EVENT
_TYPE_NOTIFY_BTM_LAUNCH_ITEM_ADD is . . . broken?,” Apple
Developer Forums, November!15, 2024, https://developer.apple.com/forums/
thread/720468.

 5. Keith Harrison, “Automatic Property Synthesis with Xcode 4.4,” Use Your
Loaf, August!1, 2012, https://useyourloaf.com/blog/property-synthesis-with
-xcode-4-dot-4/.

https://reverse.put.as/2015/08/07/writing-bad-lamware-for-os-x/
https://developer.apple.com/documentation/technotes/tn3125-inside-code-signing-provisioning-profiles
https://developer.apple.com/documentation/technotes/tn3125-inside-code-signing-provisioning-profiles
https://developer.apple.com/documentation/xcode/signing-a-daemon-with-a-restricted-entitlement
https://developer.apple.com/documentation/xcode/signing-a-daemon-with-a-restricted-entitlement
https://developer.apple.com/forums/thread/720468
https://developer.apple.com/forums/thread/720468
https://useyourloaf.com/blog/property-synthesis-with-xcode-4-dot-4/
https://useyourloaf.com/blog/property-synthesis-with-xcode-4-dot-4/

Persistence Monitor!!!277

 6. Patrick Wardle, “Stick That in Your (Root) Pipe and Smoke It,” Speaker
Deck, August!9, 2015, https://speakerdeck.com/patrickwardle/stick-that-in-your
-root-pipe-and-smoke-it.

 7. “listener:shouldAcceptNewConnection:,” Apple Developer Documenta-
tion, accessed May!25, 2024, https://developer.apple.com/documentation/
foundation/nsxpclistenerdelegate/1410381-listener?language=objc.

 8. You can read about such subversive attacks in “The Story Behind CVE-
2019-13013,” Objective Development, August!26, 2019, https://blog.obdev.at/
what-we-have-learned-from-a-vulnerability, which details the exploitation of
a popular commercial macOS "rewall product.

 9. “setConnectionCodeSigningRequirement:,” Apple Developer
Documentation, https://developer.apple.com/documentation/foundation/
nsxpclistener/3943310-setconnectioncodesigningrequirem?language=objc.

 10. “setCodeSigningRequirement:,” Apple Developer Documentation,
https://developer.apple.com/documentation/foundation/nsxpcconnection/
3943309-setcodesigningrequirement?language=objc.

 11. “exportedInterface,” Apple Developer Documentation, https://developer
.apple.com/documentation/foundation/nsxpcconnection/1408106-exported
interface.

 12. “Working with Protocols,” Apple Developer Documentation, https://
developer.apple.com/library/archive/documentation/Cocoa/Conceptual/
ProgrammingWithObjectiveC/WorkingwithProtocols/WorkingwithProtocols.html.

https://speakerdeck.com/patrickwardle/stick-that-in-your-root-pipe-and-smoke-it
https://speakerdeck.com/patrickwardle/stick-that-in-your-root-pipe-and-smoke-it
https://developer.apple.com/documentation/foundation/nsxpclistenerdelegate/1410381-listener?language=objc
https://developer.apple.com/documentation/foundation/nsxpclistenerdelegate/1410381-listener?language=objc
https://blog.obdev.at/what-we-have-learned-from-a-vulnerability
https://blog.obdev.at/what-we-have-learned-from-a-vulnerability
https://developer.apple.com/documentation/foundation/nsxpclistener/3943310-setconnectioncodesigningrequirem?language=objc
https://developer.apple.com/documentation/foundation/nsxpclistener/3943310-setconnectioncodesigningrequirem?language=objc
https://developer.apple.com/documentation/foundation/nsxpcconnection/3943309-setcodesigningrequirement?language=objc
https://developer.apple.com/documentation/foundation/nsxpcconnection/3943309-setcodesigningrequirement?language=objc
https://developer.apple.com/documentation/foundation/nsxpcconnection/1408106-exportedinterface
https://developer.apple.com/documentation/foundation/nsxpcconnection/1408106-exportedinterface
https://developer.apple.com/documentation/foundation/nsxpcconnection/1408106-exportedinterface
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/WorkingwithProtocols/WorkingwithProtocols.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/WorkingwithProtocols/WorkingwithProtocols.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/WorkingwithProtocols/WorkingwithProtocols.html

	Cover
	Title Page
	Copyright
	Dedication
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	What You’ll Find in This Book?
	Who Should Read This Book?
	The Code and Malware Specimens
	Development Enviornment
	Code Signing Requirements
	Entitlements

	Safely Analyzing Malware
	Additional Resources
	Books
	Websites

	Notes

	Part I: Data Collection
	1. Examining Processes
	Process Enumeration
	Audit Tokens
	Paths and Names
	Identifying Hidden Files and Directories
	Obtaining the Paths of Deleted Binaries
	Validating Process Names

	Process Arguments
	Process Hierarchies
	Finding the Parent
	Returning the Process Responsible for Spawning Another
	Retrieving Information with Application Services APIs

	Environment Information
	Code Signing
	Loaded Libraries
	Open Files
	proc_pidinfo
	lsof

	Other Information
	Execution State
	Execution Architecture
	Start Time
	CPU Utilization

	Conclusion
	Notes

	2. Parsing Binaries
	Universal Binaries
	Inspecting
	Parsing

	Mach-O Headers
	Load Commands
	Extracting Dependencies
	Finding Dependency Paths
	Analyzing Dependencies

	Extracting Symbols
	Detecting Packed Binaries
	Dependencies and Symbols
	Section and Segment Names
	Entropy Calculations

	Detecting Encrypted Binaries
	Conclusion
	Notes

	3. Code Signing
	The Importance of Code Signing in Malware Detection
	Disk Images
	Manually Verifying Signatures
	Extracting Code Signing Information
	Extracting Notarization Information
	Running the Tool

	Packages
	Reverse Engineering pkgutil
	Accessing Framework Functions
	Validating the Package
	Checking Package Notarization
	Running the Tool

	On-Disk Applications and Executables
	Running Processes
	Detecting False Positives
	Code Signing Error Codes
	Conclusion
	Notes

	4. Network State and Statistics
	Host-Based vs. Network-Centric Collection
	Malicious Networking Activity
	Capturing the Network State
	Retrieving Process File Descriptors
	Extracting Network Sockets
	Obtaining Socket Details
	Running the Tool

	Enumerating Network Connections
	Linking to NetworkStatistics
	Creating Network Statistic Managers
	Defining Callback Logic
	Starting Queries
	Running the Tool

	Conclusion
	Notes

	5. Persistence
	Examples of Persistent Malware
	Background Task Management
	Examining the Subsystem
	Dissecting sfltool

	Writing a Background Task Management Database Parser
	Finding the Database Path
	Deserializing Background Task Management Files
	Accessing Metadata
	Identifying Malicious Items

	Using DumpBTM in Your Own Code
	Conclusion
	Notes

	Part II: System Monitoring
	6. Log Monitoring
	Exploring Log Information
	The Unified Logging Subsystem
	Manually Querying the log Utility
	Reverse Engineering log APIs

	Streaming Log Data
	Extracting Log Object Properties
	Determining Resource Consumption

	Conclusion
	Notes

	7. Network Monitoring
	Obtaining Regular Snapshots
	DNS Monitoring
	Using the NetworkExtension Framework
	Activating a System Extension
	Enabling the Monitoring
	Writing the Extension

	Filter Data Providers
	Enabling Filtering
	Writing the Extension
	Querying the Flow
	Running the Monitor

	Conclusion
	Notes

	8. Endpoint Security
	The Endpoint Security Workflow
	Events of Interest
	Clients, Handler Blocks, and Event Handling

	Creating a Process Monitor
	Subscribing to Events
	Extracting Process Objects
	Extracting Process Information
	Stopping the Client

	File Monitoring
	Conclusion
	Notes

	9. Muting and Authorization Events
	Muting
	Mute Inversion
	Beginning Mute Inversion
	Monitoring Directory Access

	Authorization Events
	Creating a Client and Subscribing to Events
	Meeting Message Deadlines
	Checking Binary Origins
	Blocking Background Task Management Bypasses

	Building a File Protector
	Conclusion
	Notes

	Part III: Tool Development
	10. Persistence Enumerator
	Tool Design
	Command Line Options
	Plug-ins
	Persistent Item Types

	Exploring the Plug-ins
	Background Task Management
	Browser Extension
	Dynamic Library Insertion
	Dynamic Library Proxying and Hijacking

	Conclusion
	Notes

	11. Persistence Monitor
	Entitlements
	Applying for Endpoint Security Entitlements
	Registering App IDs
	Creating Provisioning Profiles
	Enabling Entitlements in Xcode

	Tool Design
	Plug-ins
	Background Task Management Events

	XPC
	Creating Listeners and Delegates
	Extracting Audit Tokens
	Extracting Code Signing Details
	Setting Client Requirements
	Enabling Remote Connections
	Exposing Methods
	Initiating Connections
	Invoking Remote Methods

	Conclusion
	Notes

	12. Mic and Webcam Monitor
	Tool Design
	Mic and Camera Enumeration
	Audio Monitoring
	Camera Monitoring
	Device Connections and Disconnections
	Responsible Process Identification

	Triggering Scripts
	Stopping
	Conclusion
	Notes

	13. DNS Monitor
	Network Extension Deployment Prerequisites
	Packaging the Extension
	Tool Design
	The App
	The Extension
	Interprocess Communication

	Building and Dumping DNS Caches
	Blocking DNS Traffic
	Classifying Endpoints
	Conclusion
	Notes

	14. Case Studies
	Shazam’s Mic Access
	DazzleSpy Detection
	Exploit Detection
	Persistence
	Network Access

	The 3CX Supply Chain Attack
	File Monitoring
	Network Monitoring
	Process Monitoring
	Capturing Self-Deletion
	Detecting Exfiltration

	Conclusion
	Notes

	Index
	Back Cover

